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Controlling a System with an Observer

Today we will introduce a new method of control based on observers.

To see how this new method builds on previous ideas, let’s consider all of

these methods in the context of a particular problem.



Two-Spring System

The plant consists of two springs and two masses. The goal is to move

the input u(t) = x0(t) so as to move the bottom mass to a desired location

x2(t) = yd(t).
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Classical Control

A classical controller for this problem has the following form.

+ K(s)
−

two-spring
system

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

To solve this classical control problem, we must

• find the equations of motion for the plant (the two-spring system) and

• express those equations in terms of a transfer function.



Check Yourself
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Which plot (if any) shows the poles of the two-spring system?
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Two-Spring System

Equations of motion.

x0(t)

x1(t)

x2(t)

fm1 = mẍ1(t) = k
(

x0(t)−x1(t)
)

− k
(

x1(t)−x2(t)
)

− bẋ1(t) − mg

fm2 = mẍ2(t) = k
(

x1(t)−x2(t)
)

− bẋ2(t) − mg

mass m = 1, stiffness k = 2, damping b = 1.4.

Positions x1(t) and x2(t) result from two separable inputs: gravity mg, which

generates constant offsets, and x0(t), which determines the dynamics.



Two-Spring System

Transfer function.Equations

x0(t)

x1(t)
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H(s) = X2(s)
X0(s) = k2

(s2m + sb + 2k)(s2m + sb + k) − k2



Classical Control

A proportional controller has the following form.

+ Kp H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

The feedback system is stable for only a small range of gains: Kp<2.5

Step responses:
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Slow convergence and large oscillatory overshoots.

Why such poor behavior?



Classical Control

Root locus.
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Classical Control

Proportional plus derivative performance is similar to that for proportional.

+ Kp+sKd H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)
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Classical Control

Root locus.
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State-Space Control

State-space control is much better.

+ +Kr B

∫
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−
yd(t) y(t)

x(t)ẋ(t)u(t)
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State-space controller

What is it about state-space control that allows better performance?



Two-Spring System

The state-space approach uses information from x2(t) and x1(t).

The combination of x1(t) and x2(t) is much more powerful than x2(t) alone.
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Beyond State-Space Control

However, to feed back information about x1(t), we must measure x1(t).

What if it’s not possible to measure x1(t).

Idea: Could we simulate the unmeasured states?



Observers

An observer is a simulation of the plant that is used to provide information

about unmeasured states. This simulation will be part of the controller!
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ŷ(t)
x̂(t)˙̂x(t)



Observers

We can build state-space controllers for both the plant and the simulation.

If our model of the plant (A, B, C) is perfect, then x̂(t)=x(t) and ŷ(t)=y(t).
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Observers

Recall the problem with designing a state-space controller for the two-

springs system: the plant did not provide outputs for all of the states x(t).
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Observers

If our model of the plant (A, B, C) is perfect, then x̂(t) = x(t) and we can

replace Kx(t) with Kx̂(t). This substitution also makes u(t) ≡ û(t).

+ +Kr B

∫
C

A

K

plant

+ +Kr B

∫
C

A

K

−

Kx̂(t)

yd(t) y(t)
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Observers

The resulting structure provides feedback from all simulated states x̂(t).

But there is a problem. What’s the biggest problem with this scheme?
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Observers

Fortunately, we can use feedback to correct simulation errors!

Calculate the difference between y(t) and ŷ(t).

Then use that signal (times L) to correct ˙̂x(t).
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y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K
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Observers

Plant dynamics: ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
Simulation dynamics: ˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t)−ŷ(t))
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Observers

Combined dynamics of the plant and observer.

ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L

(
y(t)−ŷ(t)

)
Define e(t) to be the difference between the plant and simulation states:

e(t) = x(t) − x̂(t)
Subtract ˙̂x(t) from ẋ(t) to find the derivative of e(t):

ė(t) = Ae(t) − L

(
y(t)−ŷ(t)

)
= Ae(t) − LCe(t)

Append the ẋ(t) and ė(t) to make a new combined state vector:[
ẋ(t)
ė(t)

]
=
[
A−BK BK

0 A−LC

] [
x(t)
e(t)

]
+
[
B

0

]
Kryd(t)

Notice that the resulting matrix equation has the same form as the original

state evolution equation:

ẋ(t) = Ax(t) +Bu(t)
where A,B, and x(t) have been extended to include error terms.



Observers

Combined dynamics of the plant and observer.[
ẋ(t)
ė(t)

]
=
[
A−BK BK

0 A−LC

] [
x(t)
e(t)

]
+
[
B

0

]
Kryd(t)

The poles of this system are the roots of its characteristic equation:∣∣∣sI−
[
A−BK BK

0 A−LC

] ∣∣∣ = 0

Because the evolution matrix has block triangular form, the characteristic

equation can be factored into two parts:∣∣∣sI−
[
A−BK BK

0 A−LC

] ∣∣∣ =
∣∣∣sI− (A−BK)

∣∣∣×
∣∣∣sI− (A−LC)

∣∣∣ = 0

and the poles of the augmented system are the union of the poles of the

plant and simulation dynamics.

Furthermore, the poles of the plant and observer can be chosen indepen-

dently, so we can pick an L to give fast decay of observer state errors (going

from x(t) to x̂(t)) relative to tracking errors (going from yd(t) to y(t)).



Choosing L

How can we choose L to make the simulated states x̂(t) converge to x(t)?
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Choosing L

How can we choose L to make the simulated states x̂(t) converge to x(t)?

In the normal state-space model, we choose the control vector K based on

the eigenvalues of plant dynamics:

sX(s)= AX(s)−BKX(s)+BKrYd

Choose K to optimize properties of the eigenvalues of A-BK.

For the observer, we similarly choose the feedback vector L based on the

eigenvalues of the error dynamics:

sE(s)= AE(s)−LCE(s)
Choose L to optimize properties of the eigenvalues of A-LC.

The K and L problems have a similar form – but they are not identical. The

form can be made identical by transposition, i.e., optimize the eigenvalues

of the transpose AT −CT
L

T (which are identical to those of A-LC).



Choosing L

Since optimizing K and L can be cast into problems with the same form,

the optimizations can be solved using the same methods.

K = place(A,B,[poles])
L = place(A.’,C.’,[poles]).’

or

K = lqr(A,B,Qk,Rk)
L = lqr(A.’,C.’,Ql,Rl).’



Summary

Today we formulated a new approach to control based on observers.

• An observer is a simulation of the plant that is part of the controller.

• The biggest challenge in designing an observer is keeping its state up-

to-date with that of the plant.

• We can feedback the difference between the measured and simulated

outputs to correct the simulated states.


