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Two-Spring System

Last time, we developed classical and state-space controllers for a two-

spring system.
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The goal was to move the input u(t) = x0(t) so as to position the bottom

mass y(t) = x2(t) at some desired location yd(t).



Comparison of Control Schemes

The state-space approach provided much better performance than either

the proportional or proportional-plus-derivative approach.

Why is state-space approach so much better?



State-Space Model

The observer-based approach builds on the state-space approach in which

the plant is represented as A,B, and C matrices.
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− bẋ2(t)

+B

∫
C

A

y(t)
x(t)ẋ(t)
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Check Yourself

Find A, B, and C so that ẋ = Ax+Bu and y = Cx.

How many non-zero entries are in A?
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State-Space Controller

A state-space controller can then be expressed as follows.
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How do we find K and Kr?



Check Yourself

Assume that we will implement the controller with a microprocessor.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Which pseudo-code snippet best describes a function step whose

input is the current state x and output is the next command u?

def step_v1(x):
x += e**((A-B*K)*DeltaT)*x + B*Kr*yd
return Kr*yd-K*x

def step_v2(x):
x += (I+(A-B*K)*DeltaT)*x + B*Kr*yd
return Kr*yd-K*x

def step_v3(x):
return Kr*yd-K*x



Observers

By contrast, observer-based controllers explicitly depend on A, B, and C.



Observers (Recap)

An observer is a simulation of the plant that is used by the controller –

i.e., the simulation is part of the controller!
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Observers (Recap)

We can build state-space controllers for both the plant and the simulation.
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Observers (Recap)

If our model of the plant (A, B, C) is perfect, then x̂(t) = x(t) and we can

replace Kx(t) with Kx̂(t). This substitution also makes u(t) = û(t).
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Observers (Recap)

The resulting structure provides feedback from all simulated states x̂(t).

Unfortunately even small differences between the plant and simulation can

lead to large differences between x(t) and x̂(t).
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Observers (Recap)

Fortunately, we can use feedback to correct simulation errors!

Calculate the difference between y(t) and ŷ(t).

Then use that signal (times L) to correct ˙̂x(t).
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Observers

Dynamics:

ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L

(
y(t) − ŷ(t)

)
Matrix form:[

ẋ(t)
˙̂x(t)

]
=
[
A −BK
LC A−LC−BK
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x̂(t)

]
+
[
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C 0

0 C
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]
Choose L to optimize the eigenvalues of AT −CT

L
T .

Choose K to optimize the eigenvalues of A−BK.

L = place(A.’,C.’,[poles]).’
K = place(A,B,[poles])

or

L = lqr(A.’,C.’,Q,R).’
K = lqr(A,B,Q,R)



Simulating an Observer-Based Control System

If the simulation (A,B,C, and D) matches the plant exactly then the

observer-based system is equivalent to full-state, state-space feedback.

Full-state, state-space feedback:

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)
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Step response:



Simulating an Observer-Based Control System

Observer-based feedback:
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Simulating an Observer-Based Control System

If the simulation (A,B,C, and D) matches the plant exactly then the

observer-based system is equivalent to full-state, state-space feedback.

Even more compellingly, the difference between the measured and simulated

outputs is very close to zero.



Parameter Errors

What happens if the simulation does not accurately represent the plant?
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Check Yourself

What if the simulation does not accurately represent the plant?

Which plot (if any) shows results when the model of the springs

is not as stiff as the physical springs in the plant?

1. left panel

2. center panel

3. right panel

4. none of the above



Noise Performance

Feedback control can be significantly degraded by noise that is introduced

by the sensors that provide information about the plant to the controller.
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Effects of Sensor Noise

Consider the effect of sensor noise on full-state state-space control.

How will this noise affect performance?
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Check Yourself

Effects of noise are greater for mass 1 than for mass 2.
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Check Yourself

Why are effects of noise greater for mass 1 than for mass 2?
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Effects of Sensor Noise

How should we model sensor noise with an observer?
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Effects of Sensor Noise

How will this noise affect performance of the control system?
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Results

Why is there a lot of noise in x̂2 but not x2?
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Effects of Sensor Noise

Why is there a lot of noise in x̂2 but not x2?
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Summary

Full-state, state-space controllers have access to more information and can

thereby be more effect than proportional, PD, or PID controllers.

Full-state, state-space controllers require sensors for every state, which may

not be feasible in many real-life systems.

Observers use a simulation of the plant to provide information about states

without physically measuring them.


