
6.3100: Dynamic System Modeling and Control Design

Discrete-Time Observer

May 6, 2024

Overview

In past lectures, we analyzed behaviors of continuous-time observers.

We analyzed two types of convergence:

– convergence of the observer and plant states:

x̂(t)→ x(t)
– and convergence of the plant output to the desired value:

y(t)→ yd(t)

We also looked at the sensitivity of the controllers to noise.

While we have focused on continuous-time controllers, modern controllers

increasingly work in discrete time – in large part because of the availability

of low cost, high performance microprocessors.

Today: analyze systems that combine continuous time representations

of a plant with discrete time implementations of its control.

Motor Speed Control

We will use the motor speed control system as an example.

i(t) r l

keω(t) kmi(t)
1
kf Jv(t) ω(t)

The voltage v(t) represents the electrical input to the motor.

It excites a current i(t), which generates a torque kmi(t) that tends to

rotate the motor shaft.

The torque is resisted by the moment of inertia J and by friction (kf).

As the motor spins, it generates a back emf (keω(t)) that tends to reduce

the electrical current i(t) drawn by the motor.

Motor Speed Control: Two-Port Model

Motors have two ports: one is electrical and one is mechanical.

i(t) r l

keω(t) kmi(t)
1
kf Jv(t) ω(t)

this Electrical port Mechanical port

Motor Speed Control: Mathematical Representation

Simple circuit analysis provides a mathematical representation.

i(t) r l

keω(t) kmi(t)
1
kf Jv(t) ω(t)

v(t) = ri(t) + l
di(t)
dt

+ keω(t) kmi(t) = kfω(t) + J
dω(t)
dt

Motor Speed Control: Matrix Representation

The equations are conveniently represented by a pair of matrix equations.

i(t) r l

keω(t) kmi(t)
1
kf Jv(t) ω(t)

v(t) = ri(t) + l
di(t)
dt

+ keω(t) kmi(t) = kfω(t) + J
dω(t)
dt

d

dt

[
i(t)
ω(t)

]
=
[− r

l −ke
l

km
J −

kf
J

] [
i(t)
ω(t)

]
+
[1
l

0

]
v(t)

d

dt

}

x(t) =
}

A

}

x(t) +

}

B

}

u(t)

ω(t) = [0 1]
[
i(t)
ω(t)

]
}

y(t) =

}

C

}

x(t)

State-Space Model

The matrix equations provide a complete representation of the plant.

make the output speed y(t) = ω(t) track the desired speed yd(t).

B +
∫

C

A

yd u(t) y(t)

plant

ẋ(t) x(t)

d

dt

[
i(t)
ω(t)

]
=
[− r

l −ke
l

km
J −

kf
J

] [
i(t)
ω(t)

]
+
[1
l

0

]
v(t)

d

dt

}

x(t) =
}

A

}

x(t) +

}

B

}

u(t)

ω(t) = [0 1]
[
i(t)
ω(t)

]
}

y(t) =

}

C

}

x(t)

State-Space Model + State-Space Controller

This motor model was then put into a feedback loop that was designed to

make the output speed y(t) = ω(t) track the desired speed yd(t)

B +
∫

C

A

yd Kr +

K

−
yd y(t)

u(t)

plant

ẋ(t) x(t)

where K is found using pole placement:

K = place(A,B,[pole1,pole2])
or LQR:

K = lqr(A,B,Q,R) where Q = diag([penalty1,penalty2]) and R = 1

Then Kr is set to remove steady-state errors.

Kr = -1/(C*inv(A-B*K)*B)

State-Space Model + Observer

We also analyzed the performance of an observer-based controller. make

the output speed y(t) = ω(t) track the desired speed yd(t).

B +
∫

C

A

yd Kr +
−

yd
u(t)

+

+

B C

A

K

L∫

y(t)

ŷ(t)

˙̂x(t) x̂(t)
−

plant

ẋ(t) x(t)

More effective control without having to measure the states of the plant.

Effects of Sensor Noise

We looked at noise performance for both state-space and observer-based

controllers. y(t) = ω(t) yd(t).

B +
∫

C

A

yd Kr +

K

−
yd

+ n(t)

y(t)
u(t)

plant

ẋ(t) x(t)

We focused on sensing (measurement) noise at the interface between the

plant and the controller.

Effects of Sensor Noise

We looked at noise performance for both state-space and observer-based

controllers. y(t) = ω(t) yd(t).

B +
∫

C

A

yd Kr +
−

yd +

n(t)

u(t)

+

+

B C

A

K

L∫

y(t)

ŷ(t)

˙̂x(t) x̂(t)
−

plant

ẋ(t) x(t)

We focused on sensing (measurement) noise at the plant’s output.

Hybrid Representation

Using discrete-time control of a continuous-time plant. now is the time

y(t) = ω(t) yd(t).

B +
∫

C

A

yd Kr +

K

−
yd y(t)

u(t)

plant

ẋ(t) x(t)

To use a microprocessor to control a continous time (physical) plant, we

must convert between discrete- and continuous-time representations of sig-

nals.

Hybrid Representation

Using discrete-time control of a continuous-time plant. now is the time

y(t) = ω(t) yd(t).

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

To use a microprocessor to control a continous time (physical) plant, we

must convert between discrete- and continuous-time representations of sig-

nals.

We use an analog-to-digital converter to create a discrete-time repre-

sentation of the state and a digital-to-analog converter to reconstruct a

continuous-time representation of the command u(t).

Analog-To-Digital Conversion

Analog-to-digital conversion entails two types of transformations.

Sampling: process by which a function of real domain is transformed into

a function of integer domain.

Quantization: process by which a continuous range of amplitudes is rep-

resented by a finite range of integers.

Sampling

A function of real domain is transformed into a function of integer domain.

t

f(t)

0∆T 2∆T 4∆T 6∆T 8∆T 10∆T
n

f [n] = f(n∆)

0 2 4 6 8 10

Quantization

Quantization: process by which a continuous range of amplitudes is rep-

resented by a finite range of integers.

−1

0

1

t

vi(t)

2 bits

0
0 vi

vo

−1

0

1

t

vi(t)

3 bits

0
0 vi

vo

−1

0

1

t

vi(t)

4 bits

0
0 vi

vo

Digital-To-Analog Conversion

Digital-to-analog conversion reconstructs an analog signal from its digital

representation. zero-order hold

n

x[n]

0 2 4 6 8 10
t

x(t)

0 2∆T 4∆T 6∆T 8∆T 10∆T

Hybrid Representations for Observer-Based Controllers

Even more changes are needed for hybrid control of observers.

B +
∫

C

A

yd Kr +
−

yd
u(t)

+

+

B C

A

K

L∫

y(t)

ŷ(t)

˙̂x(t) x̂(t)
−

plant

ẋ(t) x(t)

Check Yourself

What must be changed to convert the controller to discrete time?

B +
∫

C

A

yd Kr +
−

yd
u(t)

+

+

B C

A

K

L∫

y(t)

ŷ(t)

˙̂x(t) x̂(t)
−

plant

ẋ(t) x(t)

Discrete-Time State Evolution

Start by considering the scalar case: x = x, A = a, B = b, and C = c.

The continuous-time state evolution equation is

ẋ(t) = ax(t) + bu(t)
Since u[n] only changes on step boundaries, u(t) is constant between steps.

Then x(t) has homogeneous and particular parts:

x(t) = αeβt + γ

Substituting into the plant equation:

ẋ(t) = βαeβt = ax(t) + bu(t) = a(αeβt + γ) + bu(t)
shows that β = a and γ = −bu(t)/a so that

x(t) = αeat−bu(t)/a

t

u(t)

t

x(t)

Discrete-Time State Evolution

The discrete-time state evolution equation computes x[n+1] = x((n+1)∆T)
from x[n] = x(n∆T).

t, n∆T

u(t)

t, n∆T

x(t)

n
n

+
1

x(t) = αeat − bu(t)/a

x(n∆T) = αean∆T − bu(t)/a → α = x(n∆T) + bu(t)/a
ean∆T

x((n+1)∆T) = αea(n+1)∆T−bu(t)/a = x(n∆T) + bu(t)/a
ean∆T ea(n+1)∆T−bu(t)/a

= ea∆Tx(n∆T) +
(
ea∆T − 1

) b
a
u(t)

x[n+1] = ea∆Tx[n] +
(
ea∆T − 1

) b
a
u(t)

Discrete-Time State Evolution

Use linear algebra to compute the analogous matrix expression.

State update equation (scalar form):

x[n+1] = ea∆Tx[n] +
(
ea∆T − 1

) b
a
u(t)

State update equation (matrix form):

x[n+1] = eA∆T x[n] +
(
eA∆T−I

)
A−1Bu[n]

Discrete version of state evolution equation:

x[n+1] = Adx[n] +Bdu[n]
where

Ad = eA∆T

Bd =
(
eA∆T−I

)
A−1B

The exponential function in the scalar form is replaced by a matrix expo-

nential function in the matrix form.

Check Yourself

Without using a computer, determine which (if any) of the matrices

on the right is the exponential of the matrix on the left.[
1 0
0 1

]
[

1 0
0 0

]
[

1 1
0 1

]
[

2 0
0 1

]

[
2e 0
0 e

]
[
e 0
0 0

]
[
e 0
0 e

]
[
e e

0 e

]

Which diagram below (if any) shows all of the valid matches?

1. 2. 3. 4. 5.

none

Discrete-Time State Evolution

Comparison of discrete and continuous time plant descriptors.

Continuous Time

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Discrete Time

ẋ[n+1] = Adx[n] +Bdu[n]

y[n] = Cdx[n] +Ddu[n]

where

Ad = eA∆T

Bd =
(
eA∆T−I

)
A−1B

Cd = C

Dd = D

Discrete-Time Gain Matrices

For continuous-time observers, we find the state feedback matrix K by

solving a continuous-time minimization problem:

min
K

(∫ ∞
0

xT (τ)Qx(τ)dτ +
∫ ∞

0
uT (τ)Ru(τ)dτ

)
For discrete-time observers, we find the state feedback matrix Kd by solving

a discrete-time minimization problem:

min
Kd

(∞∑
m=0

xT [m]Qx[m] +
∞∑
m=0

uT [m]Ru[m]
)

These algorithms are different!

For continuous-time systems:

K=lqr(A,B,Q,R)
L=lqr(A.’,B.’,Q,R)

For discrete-time systems:

Kd=dlqr(Ad,Bd,Q,R)
Ld=dlqr(Ad.’,Bd.’,Q,R)

Check Yourself

Consider a state-space controller for the motor model.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Which of the following values of K will work best if ∆T = 0.1 ms?

K1 = lqr(A,B,Q,R)
K2 = dlqr(A,B,Q,R)
K3 = lqr(I+A*DeltaT,B*DeltaT,Q,R)
K4 = dlqr(I+A*DeltaT,B*DeltaT,Q,R)
K5 = lqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)
K6 = dlqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)

Check Yourself

Consider an observer-based controller for the motor.

B +
∫

C

A

yd Kr +
−

yd ADCDAC
u[n] u(t)

+

+

Bd Cd

Ad

Kd

Ld

Delay

y[n]

ŷ[n]

x̂[n+1] x̂[n]
−

plant

ẋ(t) x(t)

Which of the following values of Kd will work best?
K1 = lqr(A,B,Q,R)
K2 = dlqr(A,B,Q,R)
K3 = lqr(I+A*DeltaT,B*DeltaT,Q,R)
K4 = dlqr(I+A*DeltaT,B*DeltaT,Q,R)
K5 = lqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)
K6 = dlqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)

Summary

Microcontrollers (such as the Teensy) are increasingly used to control sys-

tems because of their low cost and high performance.

Using a microcontroller with a physical plant creates a hybrid system with

part described in continuous time and part described in discrete time.

Optimization algorithms (such as pole placement and LQR) have been

developed for both continuous- and discrete-time systems.

