6.3100: Dynamic System Modeling and Control Design

Discrete-Time Observer
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Overview
In past lectures, we analyzed behaviors of continuous-time observers.

We analyzed two types of convergence:
— convergence of the observer and plant states:
x(t) — x(t)
— and convergence of the plant output to the desired value:

y(t) = yal(t)
We also looked at the sensitivity of the controllers to noise.

While we have focused on continuous-time controllers, modern controllers
increasingly work in discrete time — in large part because of the availability
of low cost, high performance microprocessors.

Today: analyze systems that combine continuous time representations
of a plant with discrete time implementations of its control.



Motor Speed Control
We will use the motor speed control system as an example.
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The voltage v(t) represents the electrical input to the motor.

It excites a current i(t), which generates a torque kpi(t) that tends to
rotate the motor shaft.

The torque is resisted by the moment of inertia J and by friction (k).

As the motor spins, it generates a back emf (k.w(t)) that tends to reduce
the electrical current i(t) drawn by the motor.



Motor Speed Control: Two-Port Model

Motors have two ports: one is electrical and one is mechanical.
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Motor Speed Control: Mathematical Representation

Simple circuit analysis provides a mathematical representation.
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Motor Speed Control: Matrix Representation

The equations are conveniently represented by a pair of matrix equations.

ity T !
+ +
v(t) kew(t); : ) @kmi(t) %% =J w()
- C -
U(t>=ri(t>+zd;(tt>+kew<t) () = kyw(t) + dff)
dTim)] [-F —%][iw 1.
@ L(t)]‘[@ —’3}] MIRHEC



State-Space Model

The matrix equations provide a complete representation of the plant.
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State-Space Model + State-Space Controller

This motor model was then put into a feedback loop that was designed to
make the output speed y(t) = w(t) track the desired speed y,(t)
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where K is found using pole placement:
K = place(A,B, [polel,pole2])
or LQR:
K = 1qr(A,B,Q,R) where Q = diag([penaltyl,penalty2]) and R = 1

Then Kr is set to remove steady-state errors.
Kr = -1/(C*inv (A-B*K) *B)



State-Space Model + Observer

We also analyzed the performance of an observer-based controller.

utI | x(t x(t t
yd_’(i)_ (2 B @T (t) f ()‘ITI y(t)

A plant

)

—~
~

~—

More effective control without having to measure the states of the plant.



Effects of Sensor Noise

We looked at noise performance for both state-space and observer-based
controllers.
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We focused on sensing (measurement) noise at the interface between the
plant and the controller.



Effects of Sensor Noise

We looked at noise performance for both state-space and observer-based
controllers.
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We focused on sensing (measurement) noise at the plant’s output.



Hybrid Representation

Using discrete-time control of a continuous-time plant.
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To use a microprocessor to control a continous time (physical) plant, we
must convert between discrete- and continuous-time representations of sig-
nals.



Hybrid Representation

Using discrete-time control of a continuous-time plant.
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To use a microprocessor to control a continous time (physical) plant, we
must convert between discrete- and continuous-time representations of sig-
nals.

We use an analog-to-digital converter to create a discrete-time repre-
sentation of the state and a digital-to-analog converter to reconstruct a
continuous-time representation of the command u(t).



Analog-To-Digital Conversion

Analog-to-digital conversion entails two types of transformations.

Sampling: process by which a function of real domain is transformed into
a function of integer domain.

Quantization: process by which a continuous range of amplitudes is rep-
resented by a finite range of integers.



Sampling

A function of real domain is transformed into a function of integer domain.
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Quantization

Quantization: process by which a continuous range of amplitudes is rep-
resented by a finite range of integers.
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Digital-To-Analog Conversion

Digital-to-analog conversion reconstructs an analog signal from its digital
representation. zero-order hold
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Hybrid Representations for Observer-Based Controllers

Even more changes are needed for hybrid control of observers.
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Check Yourself

What must be changed to convert the controller to discrete time?
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Discrete-Time State Evolution

Start by considering the scalar case: x =z, A=a, B=10, and C = c.
The continuous-time state evolution equation is

&(t) = az(t) + bu(t)
Since u[n] only changes on step boundaries, u(t) is constant between steps.
Then z(t) has homogeneous and particular parts:

z(t) = et 4+~
Substituting into the plant equation:

i(t) = Baelt = ax(t) + bu(t) = alae’ + ) + bu(t)
shows that f =a and v = —bu(t)/a so that

z(t) = ae” —bu(t)/a




Discrete-Time State Evolution

The discrete-time state evolution equation computes z[n+1] = z((n+1)AT)
from z[n] = z(nAT).
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Discrete-Time State Evolution
Use linear algebra to compute the analogous matrix expression.

State update equation (scalar form):

z[n+1] = T z[n] + (e“AT - 1) gu(t)

State update equation (matrix form):

x[n+1] = A2 x[n] + (eAAT—I> A 'Buln)

Discrete version of state evolution equation:
x[n+1] = Agx[n] + Bquln]

where
Ad — €AAT

By = (eAAT—I> A'B

The exponential function in the scalar form is replaced by a matrix expo-
nential function in the matrix form.



Check Yourself

p
Without using a computer, determine which (if any) of the matrices
on the right is the exponential of the matrix on the left.
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Discrete-Time State Evolution

Comparison of discrete and continuous time plant descriptors.

Continuous Time
x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
Discrete Time
x[n+1] = Agx[n] + Bqu[n|

y[n] = Cqax[n] + Dqun]

where
Ad — eAAT
By = (eAAT—I> A'B
Cq=C



Discrete-Time Gain Matrices

For continuous-time observers, we find the state feedback matrix K by
solving a continuous-time minimization problem:

min ( /0 h x"(7)Qx(r)dr + /0 b uT(T)Ru(T)dT>

K

For discrete-time observers, we find the state feedback matrix Kq by solving
a discrete-time minimization problem:
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These algorithms are different!

For continuous-time systems:

K=1qr(4,B,Q,R)

L=1qr(A.’,B.’,Q,R)

For discrete-time systems:

Kd=dlqr(Ad,Bd,Q,R)
Ld=dlqr(Ad.’,Bd.’,Q,R)



Check Yourself

Consider a state-space controller for the motor model.
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Which of the following values of K will work best if AT = 0.1 ms?

K1
K2
K3
K4
K5
K6

1gr(A,B,Q,R)

dlgr(A,B,Q,R)

1qr (I+A*DeltaT,B*DeltaT,Q,R)

dlqr (I+A*DeltaT,B*DeltaT,Q,R)

1qr (expm(A*DeltaT) , (expm(AxDeltaT)-I)*A\B,Q,R)
dlqr (expm(A*DeltaT) , (expm(A*DeltaT)-I)*A\B,Q,R)



Check Yourself

Consider an observer-based controller for the motor.
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Which of the following values of K4 will work best?

K1
K2
K3
K4
K5
K6

1qr(4A,B,Q,R)

dlqr(A,B,Q,R)

1qr (I+A*DeltaT,B*DeltaT,Q,R)
dlqr(I+A*DeltaT,B*DeltaT,Q,R)

1gr (expm(A*DeltaT), (expm(A*DeltaT)-I)*A\B,Q,R)
dlqr (expm(A*DeltaT) , (expm(A*DeltaT)-I)*A\B,Q,R)



Summary

Microcontrollers (such as the Teensy) are increasingly used to control sys-
tems because of their low cost and high performance.

Using a microcontroller with a physical plant creates a hybrid system with
part described in continuous time and part described in discrete time.

Optimization algorithms (such as pole placement and LQR) have been
developed for both continuous- and discrete-time systems.



