Win, Place, LQR: Post-Lab - Solutions

In this post lab, we will analyze disturbance rejection in state space systems. Recall the general form of state space system is given by:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

where we assume the E matrix is identity. Now suppose there is an unmodelled disturbance that can affect the system state variables $x(t)$. The state space system is modified:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+F d(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

Here $d(t)$ is the disturbance, and F is an $n \times 1$ vector that maps a scalar disturbance to the state variable $x(t)$. Equivalently, the new system has two input variables: $u(t)$ and $d(t)$. Suppose we define a new input vector:

$$
u^{\prime}(t)=\left[\begin{array}{l}
u(t) \\
d(t)
\end{array}\right]
$$

Based on this new input vector, we want to write an equivalent state space system:

$$
\begin{aligned}
& \dot{x}(t)=A^{\prime} x(t)+B^{\prime} u^{\prime}(t) \\
& y(t)=C^{\prime} x(t)+D^{\prime} u^{\prime}(t)
\end{aligned}
$$

that has the same state variables $x(t)$ and output $y(t)$. Please write the new matrices A^{\prime}, B^{\prime}, C^{\prime}, and D^{\prime} in terms of the original matrices A, B, C, D, and F. In addition, please write the dimensions of each matrix. Here $x(t)$ has dimension of $n \times 1$.

$$
\begin{aligned}
A^{\prime} & =\square A: n \times n \text { matrix } \\
B^{\prime} & =\square[B F]: n \times 2 \text { matrix } \\
C^{\prime} & =\square[D: 1 \times n \text { matrix } \\
D^{\prime} & =\square: 1 \times 2 \text { matrix }
\end{aligned}
$$

Now let's implement a state space controller for designing the input vector $u^{\prime}(t)$. We let

$$
u^{\prime}(t)=\left[\begin{array}{c}
K_{r} r \\
d
\end{array}\right]-K^{\prime} x
$$

Here d is the disturbance that we do not have direct control. What is the dimension of the feedback matrix K^{\prime} ?
dimension of K^{\prime} :

Let $x(t), y(t)$, and $d_{\text {dist }}(t)$ be represented by their transforms:

$$
x(t) \rightarrow X(s) ; y(t) \rightarrow Y(s) ; d(t) \rightarrow D_{\text {dist }}(s)
$$

and solve for the state $X(s)$ of the new controller as a function of the disturbance $D_{\text {dist }}(s)$. You can assume $r(t)=0$. Enter your work in the box below.

$$
\begin{aligned}
& \dot{x}(t)=A^{\prime} x(t)+B^{\prime} u^{\prime}(t) \\
& \dot{x}(t)=A^{\prime} x(t)+B^{\prime}\left(\left[\begin{array}{c}
K_{r} r \\
d
\end{array}\right]-K^{\prime} x\right) \\
& s X=A^{\prime} X+B^{\prime}\left(\left[\begin{array}{c}
K r R \\
D_{\text {dist }}
\end{array}\right]-K^{\prime} X\right) \\
& \left(s I-\left(A^{\prime}-B^{\prime} K^{\prime}\right)\right) X=B^{\prime}\left[\begin{array}{c}
K_{r} R \\
D_{\text {dist }}
\end{array}\right] \\
& X=\left(s I-\left(A^{\prime}-B^{\prime} K^{\prime}\right)\right)^{-1} B\left[\begin{array}{l}
K r R \\
D_{\text {dist }}
\end{array}\right] \\
& X=\left(s I-\left(A^{\prime}-B^{\prime} K^{\prime}\right)\right)^{-1}[B F]\left[\begin{array}{l}
K r R \\
D_{\text {dist }}
\end{array}\right] \\
& X=\left(s I-\left(A^{\prime}-B^{\prime} K^{\prime}\right)\right)^{-1}\left(B K_{r} R+F D_{\text {dist }}\right) \\
& X=\left(s I-\left(A^{\prime}-B^{\prime} K^{\prime}\right)\right)^{-1} F D_{\text {dist }}
\end{aligned}
$$

Note that in the last step we use $R(s)=0$.

Next, find the closed-loop transfer function between the output $Y(s)$ and the disturbance $D_{\text {dist }}(s)$.

$$
\begin{aligned}
& y=C^{\prime} x+D^{\prime} u=C^{\prime}\left(s I-\left(A^{\prime}-B^{\prime} K^{\prime}\right)\right)^{-1} F D_{\text {dist }} \\
& H_{\text {close }}=C^{\prime}\left(s I-\left(A^{\prime}-B^{\prime} K^{\prime}\right)\right)^{-1} F
\end{aligned}
$$

Now having the equations, we are going to explore three cases computationally. We will use lab 5 as an example. Specifically, please generate the A, B, C, and D matrices in lab 5. For ease of grading, please use the following parameters:

$$
\lambda_{e}=-125 ; \quad \gamma_{i c}=1.1 ; \quad \gamma_{a i}=900 ; \quad \gamma_{a y}=1000
$$

We will assume an external disturbance directly causes a change of the displacement state Δy. So the F matrix is given by:

$$
F=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

In the first case, we are going to use pole placement just as we did in lab 5. We will completely ignore the matrix F. So you should design your K matrix using the command:
$K=$ place (A, B, poles)
For ease of grading, please use the pole vector
poles $=[-190,-200,-20]$
Please use this K vector to simulate the system response to a step disturbance. What are the A, B, C, D, and K matrices?

In the second case, let's design a new K matrix using knowledge of F. Specifically, use the A^{\prime} and B^{\prime} matrices you found above to design a new K matrix. Please write the new K matrix.
Hint: the size of this K matrix should be 2×3.

$$
K=\quad\left[\begin{array}{ccc}
0.5913 & 0.0170 & 0.1312 \\
12.3693 & 2.8995 & 203.7013
\end{array}\right]
$$

In the third case, please use the integral form of the state space controller with LQR. When formulating the control matrix, please use the following Q and R matrices:

$$
\begin{aligned}
& Q=\left[\begin{array}{cccc}
2000 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0.01 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R=1
\end{aligned}
$$

What are the $A_{+}, B_{+}, C_{+}, D_{+}$, and K_{+}matrices?

$$
A_{+}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & -125 & 0 & 0 \\
0 & 900 & 0 & 1000 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

1 Win, Place, LQR: Post-Lab - Solutions

Please simulate the system response to a step disturbance for all three cases. Please superimpose all three plots on each other. You should see the original controller has the worst disturbance rejection, the controller that considers the F vector performs significantly better, and the integral LQR controller can remove the steady state error.

