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Recap: General Form of First Order System

The general form of a first order DT system:

ylnl = Ayln — 1] + bx[n — 1] (#1)

Notes on the general form:
e Our goal is to solve for y[n]
e z[n] is the input or driving function we set
@ ) is the natural frequency

@ b is a multiplicative constant
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Recap: ZSR of First-Order DT System: Finding y[n]

We studied the case when z[n] =1 for all n > 0 and y[0] = 0.
e This is known as the Zero State Response (ZSR)
We solved for y[n] to obtain:

b

1—-A

In particular, we found that y[n]| converges to a finite value as n — oo
when —1 < A < 1.

yln] = (1 =A%)
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Linearity, Time Invariance, Superposition

Generalizing to Arbitrary Inputs Signals

Our first-order difference equations have two convenient properties:
linearity and time-invariance.

Linearity:
o If x4[n] — ya[n] and xp[n] — yp[n], then
Axo[n] + Bap[n] — Aya[n] + Byp[n].
Time Invariance:

o If x[n| — y[n], then x[n — ny] — y[n — ng].

Here, A, B are constants, “—” means “leads to,” and ng is an
integer-valued length of time.

] 6.310 Sept. 11,2024 5 /20



Linearity, Time Invariance, Superposition

Check Yourself: Defining a Complex Driving Function

Consider input signal z1[n] on the left and a more complex input z2[n]

on the right:

Define z3[n] in terms of rescaled and time-shifted z1[n] signals.

xaln] =7

] 6.310 Sept. 11, 2024
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Linearity, Time Invariance, Superposition

Check Yourself: Defining a Complex Driving Function

Consider input signal z1[n] on the left and a more complex input z2[n]
on the right:

Define z3[n] in terms of rescaled and time-shifted z1[n] signals.

x2[n] = 2x1[n — 3] — 4z1[n — §]
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Revisiting Feedforward Control

Recall: Feedforward Control

Let’s return to the idea of feedforward control:

Td [n] Tm [’I’L]
Plant

We can analyze the feedforward controller:

FF controller: wu[n] = KyTy[n|,

Tin[n] — Tn[n — 1]
Plant: = —1).
ant AT yuln — 1]
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Revisiting Feedforward Control

Feedforward First Order DT System

For our feedforward system, we arrive at the following equation:

Tinn] — Tn[n — 1]
AT

= yKTyln — 1].
Rearranging, we have:

T[] = Tin[n — 1] + ATy K¢ Tyn — 1].

What is our system’s natural frequency? What will be its steady-state
behavior?
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Revisiting Feedforward Control

Feedforward System’s Steady-state Behavior

Comparing the general first order DT system with our result,

T[] = Tin[n — 1) + ATy K Tyn — 1],

we can see that the natural frequency is A = 1.

Without any feedback control, this system is unstable and likely will
not perform very well.

e However, this is not the end of the story for feedforward control!
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Control System with Loss

Recall: Choosing K, for Stability

At the end of last lecture, we analyzed our first order DT system for
our system with feedback:

Tmln] = (1 = yATKp) T n — 1) + YAT K, Ty[n — 1].

Comparing this result with the general first order DT system, we found
that we need,

—l1<A<,
-1 <1-~yATK, <1,

2
0< K, < ——
P AT

to guarantee a stable system.
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Control System with Loss

Towards a “Realistic” Controller

Our old plant equation is given by:

Tin[n] = Tin[n — 1] + AT~yuln — 1].

Realistically, there are other environmental factors that effect our
plant. We can add another term in the equation:

Tin[n] = Tin[n — 1] + AT~yuln — 1] — ATBT,,[n — 1].

Here, 8 > 0 is a constant relating heat loss to the instantaneous
temperature T}y, [n].
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Control System with Loss

Proportional Controller for Plant with Loss

With this system, we can implement the same proportional feedback
controller:
u[n] = Kp(Taln] — Trm[n]).

The system equation becomes:

T[] = (1 = YATK,—ATS)Tn[n — 1] + AT K, Ty[n — 1].

Note that we have a new term —AT[T,,[n — 1], which changes our
selection of K.
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Control System with Loss

Stability of System with Loss

Our system with loss is still a first-order DT system and we can
analyze the stability in the same way:

1<,
-1<1-~vATK, - ATB <1,

3 2 — BAT
Pk, <2220
5 < p< ’}/AT

Choosing a value of K}, within this range guarantees stability.

Sept. 11, 2024
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Control System with Loss

Convergence of System with Loss

Suppose we want our system to converge to a steady state value as
quickly as possible. As before, we can set the natural frequency A = O:

A= (1—-~vK,AT — ApB) =0.
Solving for K, we obtain:
1—-ATS
~NAT

This analysis yields a K, that is optimal with respect to convergence
speed. However, there are other factors to consider...

K, =
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Control System with Loss

Steady-State Error with Loss

Let’s calculate the steady-state error. We’'ll define the error term as:

e[n] = Ty[n] — Tr[n].

Our goal is to find e[oco] = lim,, o €[n].
We can rearrange the system equation as:
Tmn] = (1 = yKpAT — ATB) T [n — 1] + yAT K Ty[n — 1]

e[n] = (1 —yK,AT — ATB) e[n — 1] + AT BTy[n — 1].

A

Thus, as n approaches infinity, we obtain;

e[o0] = Ae[oo] + ATBTy[o0] = e[oc] = ATf_TﬁOO].
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Control System with Loss

Nonzero Steady-State Error!

Our steady-state error is e[oo] = %Tj[oo]-

e In particular, as long as 8 # 0, our control system will have a
steady-state error!

e In many realistic situations, there is no solution that optimizes
every aspect of the control system.

e Prioritizing faster convergence vs. small steady-state error is a
design choice.

Can we design a new controller that removes the steady-state error?
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Control System with Loss

Combination Feedforward-and-Proportional Controller

Let’s define a new controller as:

uln] = KyyTaln] + Kp(Ta[n] — Tin[n])
N—_——

feedforward feedback

Now, we have 2 different gains to choose: Ky and K. Our system
equation becomes:

Tonln] = (1 — vK,AT — ATB)Tp[n — 1] + yAT(K, + K 7)Taln — 1].

What impact does picking K),, Ky have on the steady-state error of
this system?
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Control System with Loss

Computing Steady-State Error

Recall that we can define an error signal e[n] = Ty[n] — T),[n]. We can
rewrite our system equation as:

Toln] = (1 — vK,AT — ATB)Tmn — 1] + 7/ AT(K, + K ;) Tyln — 1],
eln] = (1 —vK,AT — ATB)e[n — 1] + (=K + B)AT Tyln — 1],
A
= e[n] = Ae[n — 1] + (=K + B)AT Ty[n — 1].
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Control System with Loss

Computing Steady-State Error

Now, the steady-state error becomes:

e[oo] = Ae[oo] + (—v Ky + B)AT T[],
(=7 K5 + B)ATTy[o0]

= e[oo] = T

Can we make the steady-state error e[oo] = 07 Yes!

We can set Ky = % In the second part of Lab 1, we’ll see how to
compute (3,7 analytically.
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