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Estimating Speed
The goal of this Post-Lab is to analyze and understand the origin of the inconsistency

you should have seen in lab. The major factor that contributes to this inconsistency stems
from the way we measure rotor speed.

In Lab 1 (Fast and Spurious), we worked on motor speed control where the system is
described by a first-order model:

ω[n] = ω[n−1] + ∆T (γc[n− 1]− βω[n− 1])

In our model, ω represents the current value of the angular velocity of the rotor. However,
our measurement hardware does not measure ω directly. Instead, ω is estimated by using
an optical sensor to measure the time between pulses of light reflected from an eight-bladed
rotor.

The following figure illustrates our method. When ticksperupdate=8, the control loop
runs once after each set of 8 pulses. If we label the current time as t0 and previous times as
t1, t2, · · · , then the sample time ∆T = t0 − t8.

Let ω̃ represent our estimate of angular speed based on the experimentally determined
times ti. If ticksperestimate=8, the time for 8 pulses to occur is equal to the time for



one turn of the rotor (since there are 8 blades on the rotor). Therefore the angular speed is
approximately 1 revolution divided by the time for 8 pulses of light:

ω̃[n] ≈ 1

t0 − t8
revolutions per second

Notice however that this estimate matches the true speed ω best at a point midway between
the sample times t0 = n∆T and t8 = (n−1)∆T – i.e., at t4. If we make a piecewise linear
approximation of speed, then

ω̃[n] ≈ ω[n] + ω[n−1]

2

In our original formulation of the model, the control signal c[n] was proportional to the
difference between ωd[n] and ω[n]:

c[n] = Kp(ωd[n]− ω[n])

However, the controller does not have direct access to ω[n], and a better model for our
hardware is

c[n] = Kp(ωd[n]− ω̃[n]) = Kp

(
ωd[n]−

ω[n] + ω[n− 1]

2

)
.

Problem One: The difference equations.

1A: Assuming c[n] = Kp(ωd[n] − ω[n]), write the first-order difference equation for ω[n] in
terms of ∆T,Kp, β, γ, ω[n− 1], and ωd[n− 1].

1B: Assuming c[n] = Kp

(
ωd[n]− ω[n]+ω[n−1]

2

)
, write the second-order difference equation

for ω[n] in terms of ∆T,Kp, β, γ, ω[n− 1], ω[n− 2] and ωd[n− 1].



1C: You can rewrite your answer to 1B in matrix form,[
ω[n]

ω[n− 1]

]
=

[
a11 a12
a21 a22

] [
ω[n− 1]
ω[n− 2]

]
+

[
b1
b2

]
ωd[n− 1].

What are the values of A =

[
a11 a12
a21 a22

]
and B =

[
b1
b2

]
in terms of ∆T,Kp, β, and γ.

Problem Two: Explaining the data.

Based on measurements, we calculated the system parameters β and γ. However, in
Checkoff 5, we collected data and observed an inconsistency between the model in 1A above
and the measurement. Demonstrate the inconsistency by plotting speed as a function of
time under the conditions described below.

2A: For your setup, set REPEATS=3, ticksperupdate=8, FREQ=0.2, AMP=1, ticksperestimate=8,
and disturbAmp=0. Then find a value for Kp so that the falling ω transition oscillates (or
rings) three or four times before settling. Copy and past or redraw the result below.

2B: Use the natural frequencies, or the λ, of the model in 1A (using your measured β
and γ from lab) to explain how your data is inconsistent with the first order model of 1A.



2C:Are the natural frequencies of the model in 1C, or the λ′s (which are the eigenvalues
of the matrix A), more consistent with the data you collected. Please use your favorite
software package to compute matrix eigenvalues (e.g. eig(A) in matlab), life is too short to
compute eigenvalues by hand, even for 2x2 matrices.

Problem Three: Reducing the measurement delay.

In the previous section, we estimated the rotor speed by computing the time for the rotor
to spin one full term, i.e., t0− t8 in the above figure. That method results in an estimate of ω
that is, sort of, delayed by half a rotation. More precisely, our system is better described by a
second-order difference equation, as we noted in question 2C. In this problem, we investigate
using an estimate based on a single pulse period, to see if restricting the estimate to use
more recent information yeilds behavior that is more similar to our orginal first-order model.

If ticksperestimate=1, our hardware computes a different estimate of rotor speed:

ω̂[n] =
1/8

t0 − t1

where we scaled the measurement by 1/8 because only one-eighth of a rotation is completed
between t1 to t0.

As with ω̃[n] above, we can relate the estimated speed used by the controller to the actual
speed ω[n] by linear interpolation:

ω̂[n] = aω[n] + bω[n−1].

Note the the constants a and b are NOT equal to 1
2
.

Part 3A: What are the numerical values of a and b needed for ω̂? Briefly explain your
reasoning.



Part 3B: Using your values of a and b in the formula for ω̂[n], update the values of A =[
a11 a12
a21 a22

]
and B =

[
b1
db2

]
in terms of a, b,∆T,Kp, β, and γ.

Part 3C: For your setup, set REPEATS=3, ticksperupdate=8, FREQ=0.2, AMP=1, and
ticksperestimate=1, and disturbAmp=0 (note that we only ticksperestimate is different
from the experiment in 2A). Then find a new value of Kp so that the falling ω transition
oscillates (rings) three or four times before settling. Copy and past or redraw the result
below.

Part 3D: Explain the behavior in 3C using natural frequencies (e.g. the eigenvalues of A).
Be sure to explain why you needed a LARGER Kp to achieve the same amount of ringing.
Why does the behavior appear to be “more first order”?



Problem Four: (challenging) What value of ticksperestimate gives you the best stability
(requires the largest Kp to get three oscillations to settle after a falling transition). Does
your second-order model agree with that prediction? Explain your answer (again, make use
of some eigenvalue computing software!)


