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A Mystery From Lab
In the last part of the code-of-arms lab, we asked you to find values for the controller

gains Kp and Kd that stabilized the step responses from a controller with Ki = 10. As
most of you discovered, the step responses either settled very slowly or exhibited substantial
overshoot, like the arm angle behavior plotted in the top half of the picture below (measured
angle in blue, desired angle in red). In the bottom half of the picture below, we show a plot
of the arm behavior (with the same controller gains) after we changed the Teensy sketch
slightly. As you can see in the figure, when we deleted the Kpθd[n] term from the formula
for the motor motor command. In this problem set we are going to examine why.

We have been describing discrete-time systems with inputs and disturbances as

x[n] = Ax[n− 1] +Bu[n− 1] +Bdud[n− 1]

where x[n] is an N -length vector of states, A is an N ×N matrix whose eigenvalues are the
system’s natural frequencies, the input and disturbance matrices B and Bd are N ×#inputs
and N×#disturbers, though we often consider systems with a scalar input (e.g. u[n] = θd[n]
in the propeller arm case) and a scalar disturbance, in which caseB andBd areN×1 matrices.



For most of the experiments in the code-of-arms lab, we were measuring zero input
responses. That is, we lifted the arm to set a non-zero initial angle, but zero initial angular
velocity and acceleration, and then dropped the arm and monitored its behavior. Since the
inputs and disturbances were zero for these experiments, we could ignore B and Bd, and
focus on selecting controller gains for which the natural frequencies (aka the eigenvalues
of A) were all less than one in magnitude. We can not ignore B and Bd when analyzing
the last experiment of the lab, where we used sum (integral) feedback to improve input
tracking and disturbance rejection. For that last experiment, we were NOT measuring zero
input responses, we tested the arm with input steps instead of lifting-and-letting-go. And
in addition, we dropped Lego U’s on the arm to disturb it. So, we need to look beyond the
eigencondition on A, and examine the impact of B and Bd.

In this postlab, we will focus on analyzing steady-state behavior, which means we are
making several assumptions. First, we are assuming that for the selected controller gains, the
eigenvalues of A are all less than one in magnitude, so there is a steady state and (I − A)−1

exists. Second, we will assume the input and the disturbance are constants (which we will
normalize for convenience as u[n] = 1 and ud[n] = 1 for all n). Experimentally that means
we change the input or the disturbance once, at the start of an experiment, but then hold
them fixed (well not quite, we just hold the input fixed long enough for the arm’s behavior
to settle).

If A satisfies the eigencondition (its eigenvalues are less than one in magnitude) the
disturbance-free steady-state x[∞] is then given by

x[∞] = (I − A)−1B.

and the difference between the steady-state with and without disturbance is given by

xdist[∞]− x[∞] = (I − A)−1Bd.

We can often arrange for the N × N matrix I − A to have structural properties which
guarantee zeros in the N ×N matrix (I − A)−1, independent of model parameters or gains.
Such structural zeros are important! If the i, j entry of (I − A)−1 is always zero, regardless
of controller gain (assuming stability), then a non-zero in the jth row of B or Bd has no
effect on xi[∞]. As we will see below, the structure of the matrices describing our propeller
arm system lead to many structural zeros in (I − A)−1 and provide us with numerous gain-
independent insights.

This problem set has only one problem, but many, many parts.

A,Matrix Structure: Suppose each of the first L rows of an invertible N ×N matrix M
has only one nonzero. That is, Mi,i+1 is the only nonzero in row i, for i ∈ 1, ..., L. As an



example, suppose L = 3 and N = 5, then

M =


0 M1,2 0 0 0
0 0 M2,3 0 0
0 0 0 M3,4 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 .

where the ∗ is used to denote a matrix entries that are possibly non-zero.
If M is invertible, then M−1 exists and each of its rows 2 through l + 1 has exactly one

nonzero. That is, M−1
i+1,i is the only nonzero in row i+ 1, for i ∈ 1, ..., L. For the L = 3 and

N = 5 example above,

M−1 =


∗ ∗ ∗ ∗ ∗

(M−1)2,1 0 0 0 0

0 (M−1)3,2 0 0 0

0 0 (M−1)4,3 0 0

∗ ∗ ∗ ∗ ∗

 .

Note that these are structural properties, and do NOT depend on specific values for the
matrix entries!

What are the L values (M−1)i+1,i, i ∈ 1, ..., L, as a function of Mi,i+1, i ∈ 1, ..., L (hint,

use the fact that MM−1 = I)?

B,Reorder For Structure: For checkoff five of the code-of-arm lab, we calibrated a 4×4 A
matrix that models the propeller arm system with proportional and derivative (PD) feedback
control. In checkoff six, we extended that model to include an integral (or sum) term. Then
we generated a 5 × 5 A matrix that models the propeller arm system with proportional,
integral, and derivative (PID) feedback control.

Please show a re-ordering of the states (θa[n], θa[n−1], ωa[n], αa[n] and sum[n]), and the
associated A matrix that results in an I−A matrix with the structural property described in
the first part of this problem. For the PD case, find an ordering for which the structural prop-
erty holds with L = 2, and for the PID case, for L = 3. Please help make this problem easier
to grade, and for both cases, order the θa[n−1] state last (we do NOT mean the θa[n]! state).

C, Inverses: Using your state orderings, determine (I − A)−1 for both the PD and PID
cases. Please give your answers in the same format as the 5× 5 M−1 example above. That
is, determine formulas for the values in the middle L rows, but use asterisks to represent any
potentially non-zero entries in the first and last rows.

D,Killer B’s: Consider the simplified version of the motor command (in which we assume
m = 1 and θd[n]− θd[n− 1] ≈ 0),

c[n] = Kpθd[n] +Kp (−θa[n]) +Kd

(
−θa[n]− θa[n− 1]

∆T

)
+Kisum[n].



For the simplified motor command above, and your state reorderings, what are theB matrices
for the PD and PID cases? And how do your B matrices change if we eliminate the Kpθd[n]
term from c[n] (just like in the modification of the Teensy sketch).

Don’t forget! The difference equation for sum[n] depends on θd[n], and therefore con-
tributes to B,

sum[n] = sum[n− 1] + ∆T (θd[n− 1]− θa[n− 1]) .

E,Get it Together: For the PD and PID cases, the non-zero patterns of their respective
(I − A)−1 and B matrices tell you which steady-states (of θa, ωa, αa and sum) could be
effected by discarding the Kpθd[n] term from the motor command. For the PD case and
PID cases, which steady-states could possibly be effected by dropping Kpθd[n] term from the
motor command? How does this help explain part of the mystery described at the beginning
of this problem set?

F, Disturber: Consider two possible disturbances: first, a drop in voltage for propeller
motor power supply, and second, dropping a Lego U on to the propeller arm. For the PD
and PID cases, which entries of the associated Bd matrix are nonzero for each of these two
disturbances?

BEWARE: In our model for the propeller arm, we introduced a state variable that we
deceptively referred to as arm angular acceleration. Despite its label, our state αa is only
part of the arm acceleration, the part due to thrust generated by the propeller motor. Note
that the total arm angular acceleration must be zero in stready-state, but αa[∞] might not
be zero, as it may be balancing contributions to arm acceleration from other forces (such as
the gravity force due to a weight dropped onto the arm).

G, Disturbed: For the PD and the PID cases, and the two different disturbances, use the
nonzero patterns of the asssociated Bd and (I − A)−1 matrices to determine which steady-
states (out of θa, ωa, αa and sum) could be effected be each disturbance. When using the
PID controller, is there any physical disturbance that will effect the arm angle’s steady state?
Why would one describe a “disturbance” in the the equation for sum[n] as “sensor noise”?


