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Disturbance in the Force Postlab - Due April 7th

We suggest writing your solutions in a separate document and then turning it into a pdf
(scan it or take pictures if you like to use pencil and paper). And PLEASE INCLUDE YOUR
DERIVATIONS!! We have no way of verifying your understanding with just a numerical
answer, particularly if there were a minor calculation error.

Problem One
In lab, we had a block diagram for our arm control feedback system, repeated below.

Figure 1: Block Diagram For Arm Feedback System.

We usually refer to H(s) in the above diagram, whose input is the command C and
whose output is Θa, as the transfer function for the “open-loop” system because there is
no looping of the output back to the input. When we add K(s), the controller we design,
and then “loop” the output back and subtract it from input Θd, we refer to the system as
“closed-loop”. We then refer to G(s) as the closed-loop transfer function, and it relates Θd

to Θa as in
Θa = G(s)Θd.

If the input to our system is a complex sinusoid,

θd(t) = Θde
jωt

then in sinusoidal-steady-state, the output of the closed loop system is

θa(t) = Θae
jωt = G(jω)Θde

jωt

and we refer to G(jω) as the “closed-loop” frequency response.



Part A)
If we assume Ki = 0, we can write G(s) for the above block-diagrammed system in as a

ratio of two polynomials in s,

G(s) =
b1s+ b0

s3 + a2s2 + a1s+ a0
.

In terms of Kp, Kd, β, and γa, what are b1, b0, a2, a1, and a0?

Part B)
The a’s and b’s in the above expression are real, and generally, G(jω) is a complex

number. The “realness” of the a’s and b’s means that we known something about G(−jω).
The complex conjugate of a complex number p + qj, denoted (p + qj)∗, is given by

(p + qj)∗ = p − qj. Show by direct calculation that given real a’s and b’s in the ratio
of polynomials representing G(s), then G(−jω) = G(jω)∗ (Hint, if w and v are complex
numbers, then

(
w
v

)∗
= w∗

v∗
).

Part C)
Show that

G(jω)(jω)2a2 +G(jω)(jω)a1 +G(jω)a0 − (jω)b1 − b0 = −G(jω)(jω)3.

Suppose we rewrite the above equation as

G(jω)(jω)3ã3 +G(jω)(jω)2ã2 +G(jω)(jω)ã1 − (jω)b̃1 − b̃0 = −G(jω),

Determine an analytic formula for the ã’s and b̃’s in terms of the a’s and b’s.

Problem Two
When you used the sweeper in lab, you were measuring the closed-loop transfer function

G(jω) of the arm control system by applying input sinusoids and measuring the output.
HOWEVER, when you took your data, you used a controller with a non-zero integrator
gain, as we suggested, but we discovered that adding the integrator makes this postlab
problem unnecessarily complicated. So, we are providing data from our arm running the
sweeper, but with zero integrator gain. The data file is linked on the postlab page. In this
problem, you will fit a transfer function to our data by using (and modifying) our fitter,
labF itter.m (you can download labF itter.m from the postlab webpage).

The function labFitter takes the matrix of measured data we collected in lab, and fits
it to a transfer function. Specifically, the fitter finds the a’s and b’s that provide the best



least-squares fit to

G(jω1)(jω1)
2a2+ G(jω1)(jω1)a1 +G(jω1)a0 − (jω1)b1 − b0 ≈ −G(jω1)(jω1)

3

G(jω2)(jω2)
2a2+ G(jω2)(jω2)a1 +G(jω2)a0 − (jω2)b1 − b0 ≈ −G(jω2)(jω2)

3

...
...

...

G(jω40)(jω40)
2a2+ G(jω40)(jω40)a1 +G(jω40)a0 − (jω40)b1 − b0 ≈ −G(jω40)(jω40)

3

G(jω41)(jω41)
2a2+ G(jω41)(jω41)a1 +G(jω41)a0 − (jω41)b1 − b0 ≈ −G(jω41)(jω41)

3

where the measured frequency index, i, ranges from 1 to 41.
The sweeper saves data for 41 unique frequencies but you should have a data matrix

with more than 41 rows, because we took data for two or three sweeps in a row. The matlab
script averages the multiple readings for each unique frequency, examine lines 21-32 to see
this.

To load our data file, download ”data032025.mat” from the postlab page, and in matlab
type “load data032025.mat”. Then in the matlab command window, you can type

[GsFit,GsSynth] = labFitterMySol(3,1,x,false)
Part A

The script will run and fit a three-pole, one-zero transfer function to synthetic data. The
script prints the coefficients in the command window, plots results, and then returns the
transfer function for the fit and for the synthetic data. What happens when you change
“false” to “true”? That is, what is the fitter doing differently when you type

[GsFit,GsSynth] = labFitterMySol(3,1,x,true)?

Part B
If you examine the output displayed in the command window in Matlab, you will see

that the program displays two vectors of results, ”abcoeffComplex” and “abcoeffs”.

• 1) How do those two vectors relate when you fit synthetic data? When you fit your
measured data? Why do you think that is?

• 2) Examine lines near line 76 in the fitter, what is the Acc matrix and what is the
Bcc vector? How might you use them to insure that the a’s and b’s generated by the
least-squares solution are real?

• 3) Modify the labFitter function to use Acc and Bcc instead of A and B to compute
“abcoeffs”. Do you see a difference in the fit if you use synthetic data? How about
when you use your measured data? Do you get a good fit at high frequency? How
about at low frequency?

• 4) The fitter returns the transfer funct “GsFit”. Try printing it (just type GsFit at the
matlab command window and hit return). what can you say about the poles (natural
frequencies) and zeros of the fit? Are they different if you fit synthetic versus measured
data?



Part C
For this part, you will be modifying the matlab script so that the script will compute the

best least-squares fit to the set of equations

G(jω1)(jω1)
3a3+ G(jω1)(jω1)

2a2 +G(jω1)(jω1)a1 − (jω1)b1 − b0 ≈ −G(jω1)
...

...
...

G(jω41)(jω41)
3a3+ G(jω41)(jω41)

2a2 +G(jω41)(jω41)a1 − (jω41)b1 − b0 ≈ −G(jω41).

Be sure to use the Acc matrix and the Bcc vector so that your fitter uses both positive and
negative frequencies.

• 1) Examine the lines of the matlab function near 70 and near 90 to see hints for how
to make the changes. For this problem, please submit the lines you changed.

• 2) Does the fit improve when you fit synthetic data with your new version of the fitter.
How about when you fit to your measured data? Do you get a good measured-data fit
at high frequency? How about at low frequency?

• 3) The fitter returns the transfer funct “GsFit”. Try printing it (just type GsFit at
the matlab command window and hit return). What can you say about the poles
(natural frequencies) of your fit, and what do they tell you about stability of your
control system. Are they different if you fit synthetic versus measured data?

• 4) What are the coefficients of the numerator polynomial of “GsFit” when you fit
your measured data? What should they be? What are the natural frequencies of your
fit (the roots of the denominator polynomial)? How do they compare to the natural
frequencies of the fit to your data for the other two versions of the fitter?


