

Higher Order Models

So Far . . .

- Model dynamical input/output effects by *first order models*:

$$y[n] = \lambda y[n-1] + \gamma u[n-1]$$

($u[n]$ is n -th input sample, $y[n]$ is n -th output sample). These models are

- ✓ linear
- ✓ time-invariant
- ✓ strictly causal

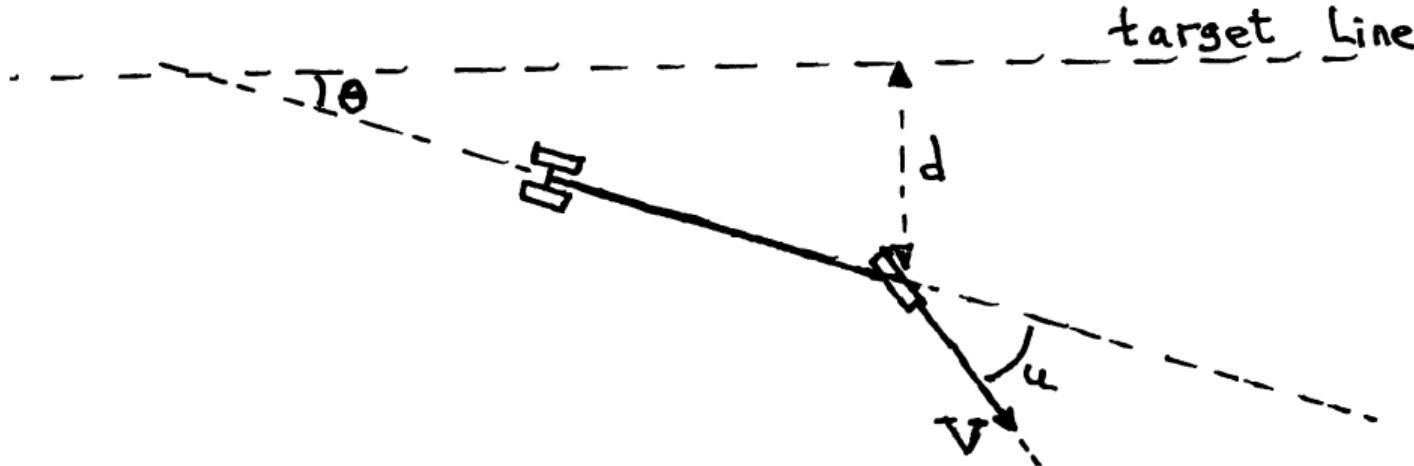
- Assess *stability* by comparing $|\lambda|$ to 1.
- Enjoy superposition laws and semi-explicit formulae for the output, like

$$y[n] = \lambda^n y[0] + \gamma \sum_{k=0}^{n-1} \lambda^{n-k-1} u[k].$$

Are first order models enough for what we need in 6.3100 ?

A Front-Wheel-Drive Tricycle

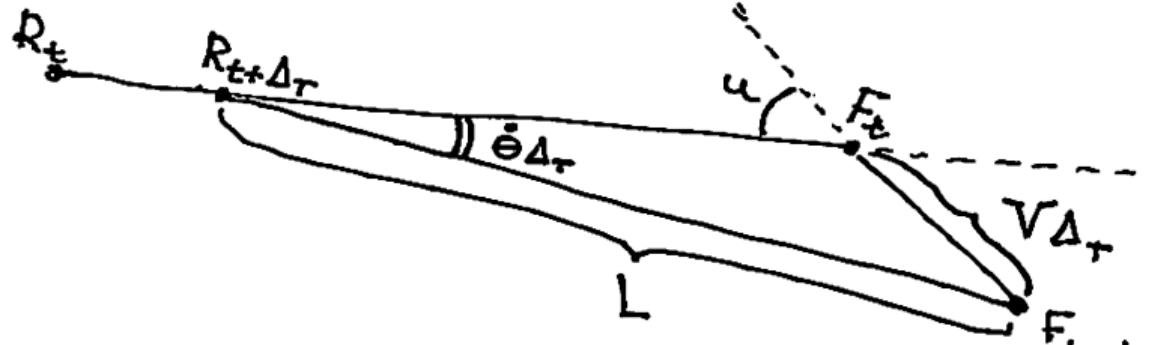
A Front-Wheel-Drive Tricycle



Notation

- V : front wheel forward speed (constant, in m/s)
- L : front wheel to rear axle center distance (constant, in m)
- θ : heading angle (signed, in rad , output signal)
- d : distance to the target line (signed, in m , controlled output)
- u : front wheel to robot axis angle (signed, in rad , control input)

Differential equations for front-wheel-drive tricycle



- **Law of Sines:** $\frac{V\Delta_T}{\sin(\dot{\theta}\Delta_T)} = \frac{L}{\sin(u)}$, hence $\dot{\theta} = \frac{V}{L} \sin(u)$
- **Change of d :** $\dot{d} = V \sin(\theta + u)$

Assuming $|u|$ and $|\theta|$ are small (i.e., $\sin(\theta + u) \approx \theta + u$, $\sin(u) \approx u$)

$$\boxed{\begin{aligned}\dot{d} &= V \sin(\theta + u) \approx V(\theta + u), \\ \dot{\theta} &= \frac{V}{L} \sin(u) \approx \frac{V}{L}u.\end{aligned}}$$

Exact ZOH Difference Equations for Front-Wheel-Drive Tricycle

- $u[n]$: constant value of $u(t)$ on $[n\Delta_T, n\Delta_T + \Delta_T)$
- $\theta[n] = \theta(n\Delta_T)$, $d[n] = d(n\Delta_T)$: samples of θ and d

Since $\dot{\theta}(t) = \frac{V}{L}u(t) = \frac{V}{L}u[n]$ for t in $[n\Delta_T, n\Delta_T + \Delta_T)$,

$$\theta(n\Delta_T + \tau) = \theta[n] + \frac{V}{L}u[n]\tau \quad \text{for } 0 \leq \tau \leq \Delta_T.$$

In particular, $\theta[n+1] = \theta[n] + \frac{V}{L}\Delta_T u[n]$.

Since $\dot{d}(t) = V(\theta(t) + u(t)) = V(\theta[n] + u[n] + \frac{V}{L}u[n]\tau)$ for $t = \Delta_T + \tau$, $0 \leq \tau < \delta_T$,

$$d(n\Delta_T + \tau) = d[n] + V(\theta[n] + u[n])\tau + \frac{V^2}{2L}u[n]\tau^2 \quad \text{for } 0 \leq \tau \leq \Delta_T.$$

In particular, $d[n+1] = d[n] + V\Delta_T\theta[n] + (V\Delta_T + \frac{V^2\Delta_T^2}{2L})u[n]$.

Approximate ZOH Difference Equations for Front-Wheel-Drive Tricycle

- $u[n]$: constant value of $u(t)$ on $[n\Delta_T, n\Delta_T + \Delta_T)$
- $\theta[n] = \theta(n\Delta_T)$, $d[n] = d(n\Delta_T)$: samples of θ and d

With Δ_T sufficiently small (more accurately, when $V\Delta_T/L \ll 1$),

$$\dot{d} = V(\theta + u), \quad \dot{\theta} = \frac{V}{L}u$$

converts to

$$\begin{aligned} d[n+1] &= d[n] + V\Delta_T(\theta[n] + u[n]) + \frac{V^2\Delta_T^2}{2L}u[n] \approx d[n] + V\Delta_T(\theta[n] + u[n]), \\ \theta[n+1] &= \theta[n] + \frac{V\Delta_T}{L}u[n]. \end{aligned}$$

One can argue that the missing $\frac{V^2\Delta_T^2}{2L}u[n]$ term in the first equation is not important, as everything is known approximately anyway.

Matrix form

Define the state

$$\mathbf{x}[n] := \begin{bmatrix} d[n] \\ \theta[n] \end{bmatrix}.$$

Then the small-angle approximation

$$\begin{aligned} d[n+1] &= d[n] + V\Delta_T(\theta[n] + u[n]) + \frac{V^2\Delta_T^2}{2L}u[n] \approx d[n] + V\Delta_T(\theta[n] + u[n]), \\ \theta[n+1] &= \theta[n] + \frac{V\Delta_T}{L}u[n]. \end{aligned}$$

can be converted to

$$\mathbf{x}[n+1] = A\mathbf{x}[n] + B u[n], \quad A = \begin{bmatrix} 1 & V\Delta_T \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} V\Delta_T(1 + \frac{V\Delta_T}{2L}) \\ \frac{V\Delta_T}{L} \end{bmatrix}.$$

Sanity Checks ?

$$x[n] := \begin{bmatrix} d[n] \\ \theta[n] \end{bmatrix}, \quad x[n+1] = Ax[n] + Bu[n].$$

Scalars hiding within the state

- To recover $d[n]$ as $Cx[n]$, which C should I use?
- To recover $\theta[n]$ as $C_\theta x[n]$, which C_θ should I use?

The meaning of proportional feedback

We expect the use of proportional feedback $u[n] = K_p(d_{des}[n] - d[n])$ to result in a similar equation

$$x[n+1] = A_{cl}x[n] + B_{cl}d_{des}[n],$$

where A_{cl} and B_{cl} are defined in terms of A , B , and K_p . What is the expression for A_{cl} and B_{cl} ?

General solution (scalar vs. vector)

Scalar recurrence

If $y[n] = \lambda y[n-1] + \gamma u[n-1]$, then

$$y[n] = \lambda^n y[0] + \sum_{m=0}^{n-1} \lambda^{n-1-m} \gamma u[m].$$

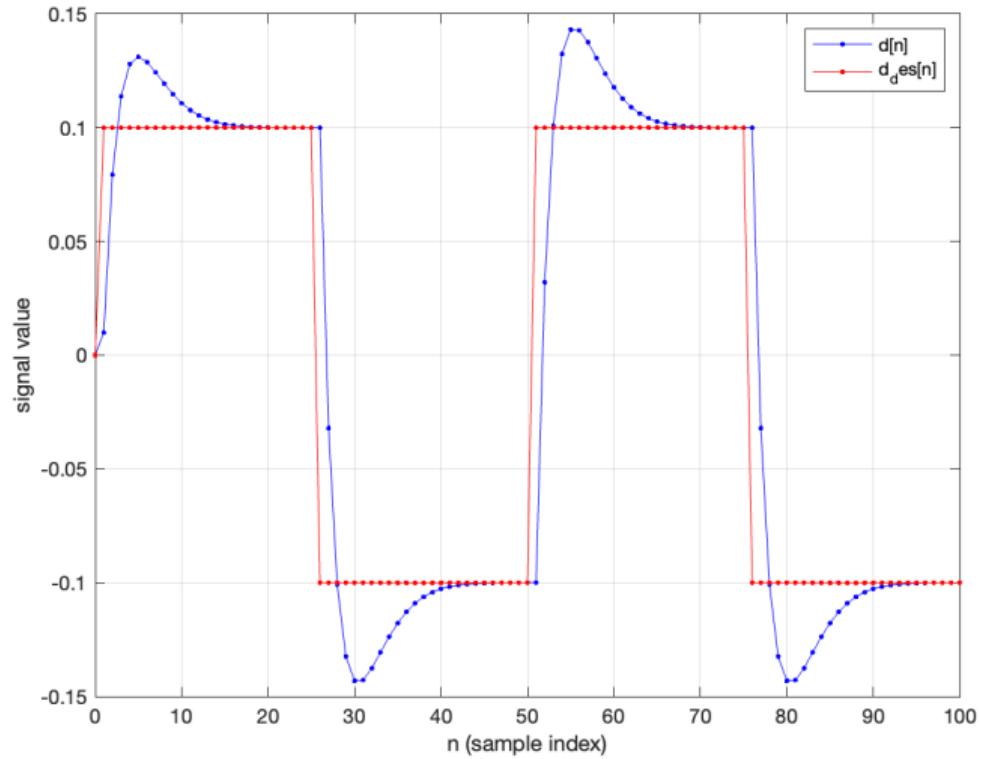
Vector recurrence

If $\mathbf{x}[n] = A\mathbf{x}[n-1] + B u[n-1]$, then

$$\mathbf{x}[n] = A^n \mathbf{x}[0] + \sum_{m=0}^{n-1} A^{n-1-m} B u[m].$$

Matrices generally do *not* commute, so the order matters.

Front Wheel Drive Transients ($L = V = 1$, $\Delta_T = 0.2$, $K_p = 3$)



Which Features of A_{cl} determine the transients, qualitatively?

- Do the transients settle?
- Do the transients oscillate?
- What is the growth/decay rate of the transients?

Which properties of matrices do we traditionally pay attention to?

Dependence of components of A^n on $n = 0, 1, 2, \dots$

- if N -by- N real matrix A has N **different** eigenvalues $\lambda_1, \dots, \lambda_N$ (some of which could be complex) then each component of A^n will be a sum of terms λ_k^n scaled with constant (possibly complex) coefficients
- if an eigenvalue λ of A is complex, i.e., $\lambda = re^{j\phi}$ for some real $r > 0$ and $\phi \in (-\pi, \pi) \setminus \{0\}$, then $\bar{\lambda} = re^{-j\phi}$ is also an eigenvalue of A , and the corresponding λ^n and $\bar{\lambda}^n$ terms in A^n can be replaced by the terms $r^n \cos(n\phi)$ and $r^n \sin(n\phi)$
- if an eigenvalue $\lambda \neq 0$ of A is repeated $m > 1$ times, in addition to the λ^n term, one may need to add terms $n\lambda^n, n^2\lambda^n, \dots, n^{m-1}\lambda^n$ to form the components of A^n

Asymptotic behavior of A^n

- $A^n \rightarrow 0$ as $n \rightarrow +\infty$ if and only if all eigenvalues of A have absolute value less than 1
- a component of A^n grows exponentially as $n \rightarrow +\infty$ if and only if an eigenvalue of A has absolute value greater than 1
- components of A^n have oscillations (possibly hidden behind a stronger real exponent) when A has non-real eigenvalues

Diagonalizable matrices

A **square** real N -by- N matrix $A \in \mathbb{R}^{N \times N}$ is called **diagonalizable** when

$$A = S\Lambda S^{-1}, \quad \text{where} \quad \Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_N) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{bmatrix}$$

which implies

$$A^n = S\Lambda S^{-1}S\Lambda S^{-1} \dots S\Lambda S^{-1} = S\Lambda^n S^{-1} = S \begin{bmatrix} \lambda_1^n & 0 & \dots & 0 \\ 0 & \lambda_2^n & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_N^n \end{bmatrix} S^{-1}$$

Diagonalizable matrices (continued)

$$A = S\Lambda S^{-1}, \quad \text{where} \quad \Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_N) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{bmatrix}$$

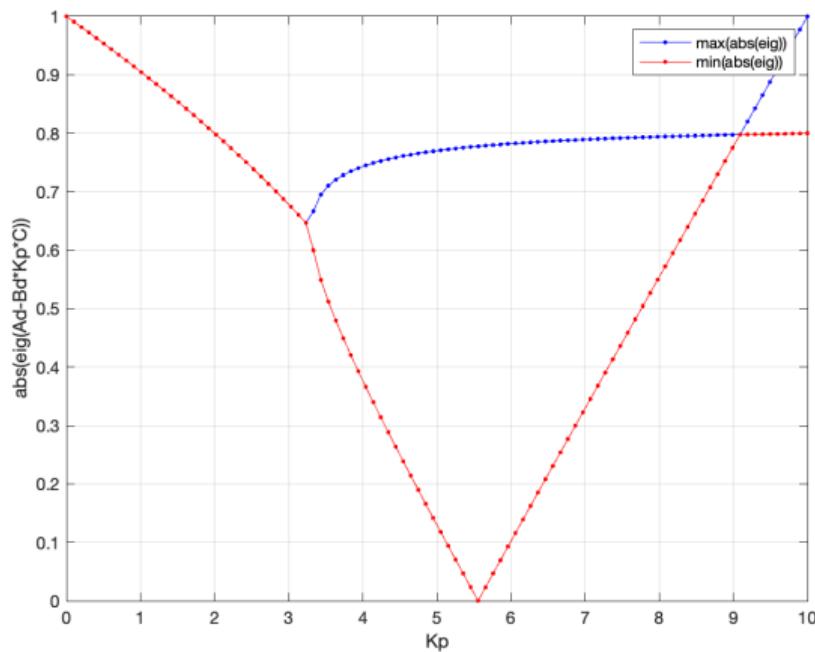
means

- λ_k are **eigenvalues** of A (possibly repeated)
- columns of S are **eigenvectors** of A , **linearly independent**
- even though A is real, Λ and S may have to be complex

Two simple **sufficient** criteria of diagonalizability of A :

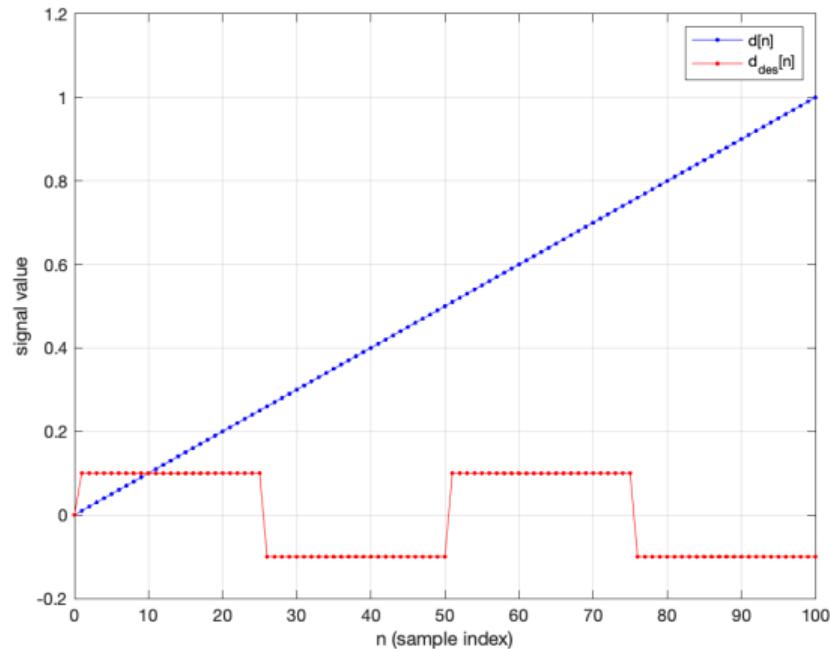
- when N -by- N matrix A has N **different** eigenvalues
- when A and its transpose A^T commute, i.e., $AA^T = A^TA$ (e.g., symmetric A)

Front Wheel Drive Tricycle Eigenvalues ($L = V = 1, \Delta_T = 0.2$)



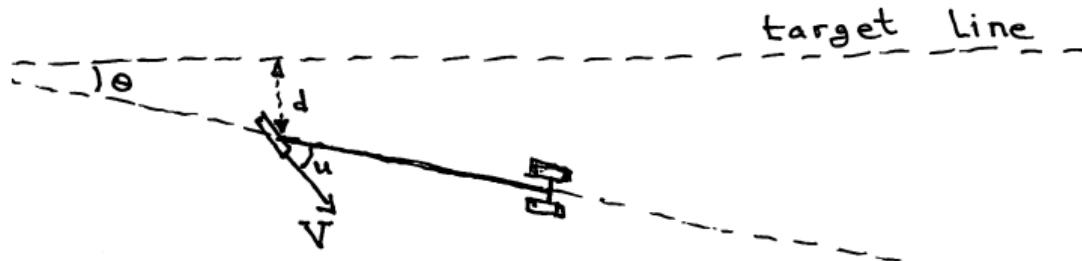
Here we see stability for $0 < K_p < 10$, and complex eigenvalues for $0 < K_p < K_p^0 \approx 3.2$

Front Wheel Drive Transients ($L = V = 1$, $\Delta_T = 0.2$, $K_p = 0$)



You can also see how the linear model breaks down here!

A Rear-Wheel-Drive Tricycle



Differential equation model

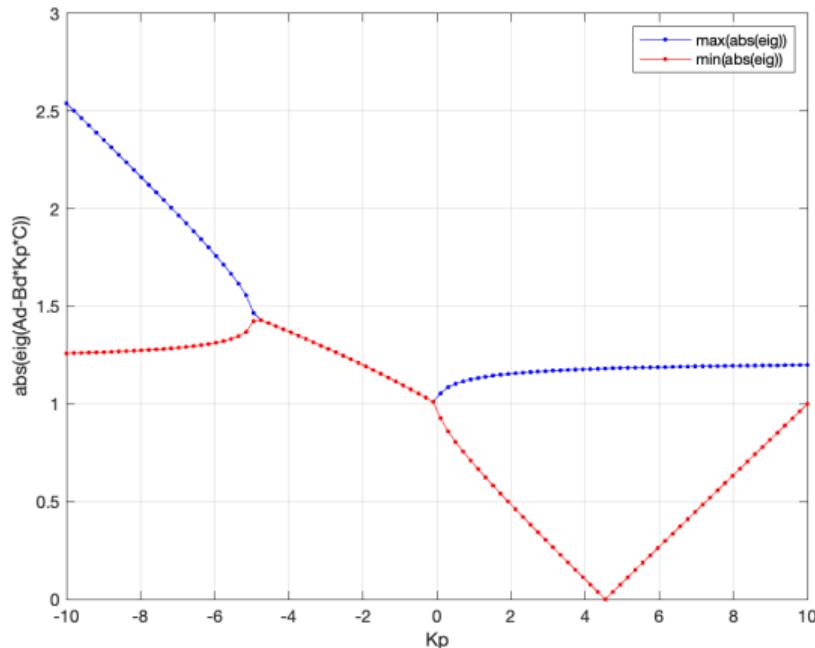
$$\dot{d} = V(\theta + u) \approx V(\theta + u),$$

$$\dot{\theta} = -\frac{V}{L} \sin(u) \approx -\frac{V}{L} u$$

converts to

$$d[n+1] = d[n] + V\Delta_T(\theta[n] + u[n]) - \frac{V^2 \Delta_T^2}{2L} u[n],$$
$$\theta[n+1] = \theta[n] - \frac{V \Delta_T}{L} u[n].$$

Rear Wheel Drive Tricycle Eigenvalues ($L = V = 1, \Delta_T = 0.2$)



There is no way to stabilize with a proportional feedback!

Quiz du Jour

Control system state $y = y[n]$ is updated according to the law

$$y[n] = Ay[n - 1], \quad \text{with} \quad y[0] = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

(Naturally, A is a real matrix.) One of the eigenvalues of A is known to be $\lambda = 0.5 + 0.5j$ (where $j = \sqrt{-1}$).

- (a) What is the **other** eigenvalue one can be sure A also has?
- (b) Is it guaranteed that A is diagonalizable?
- (c) Does the length of $y[n]$ decay or grow as $n \rightarrow +\infty$?
- (d) Do the components of $y[n]$ oscillate or not as $n \rightarrow +\infty$?