
Postlab 1: Fast and Spurious – Solutions

Problems
1. Latent Inconsistency

In Lab 1 (Fast and Spurious), we worked on motor speed control where the system is described by a
first-order model:

ω[n] = ω[n−1] + ∆T
(
βω[n−1] + γc[n−1]

)
Based on measurements, we calculated the system parameters β and γ. However, in Checkoff 5, we
collected data and observed an inconsistency between the model and the measurement. Demonstrate
the inconsistency by plotting speed as a function of time under the following two conditions:

1a. Kp is set to its largest stable value, REPEATS=3, ticksperupdate=8, FREQ=0.2, AMP=1,
and ticksperestimate=8, disturbA=0.

1b. Kp is set to its largest stable value, REPEATS=3, ticksperupdate=8, FREQ=0.2, AMP=1,
and ticksperestimate=1, disturbA=0.
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1c. Describe the inconsistency that is demonstrated by the previous plots.
Hint: You should have discussed this point with the TAs during Checkoff 5.

When ticksperestimate=8, the system does not show the pointwise oscillation that
we expect of a first-order system. Instead, the oscillation involves 2 sample points on
each side. So the frequency is approximately 3.75 Hz. This type of oscillation can occur
for second-order (and higher-order) systems, but not for first-order systems.

When we change ticksperestimate to 1, we see pointwise oscillation, and the system
behaves more like a first-order system. The oscillation also decays faster, suggesting a
change in the natural frequency λ.

2. Estimating Speed
The goal of this Post-Lab is to analyze and understand the origin of the inconsistency that was seen
in the previous part. The major factor that contributes to this inconsistency stems from the way we
measure rotor speed. In the model, ω represents the current value of the angular velocity of the rotor.
However, our experiment hardware does not provide a direct measurement of ω. Instead, we must
estimate the angular velocity from the time between pulses of light detected by the optical sensor.
The following figure illustrates our method. When ticksperupdate=8, the control loop runs once after
each set of 8 pulses. If we label the current time as t0 and previous times as t1, t2, · · ·, then the sample
time ∆T = t0 − t8.
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Let ω̃ represent our estimate of angular speed based on the experimentally determined times ti. If
ticksperestimate=8, the time for 8 pulses to occur is equal to the time for one turn of the rotor (since
there are 8 blades on the rotor). Therefore the angular speed is approximately 1 revolution divided by
the time for 8 pulses of light:

ω̃[n] ≈ 1
t0 − t8

revolutions per second

Notice however that this estimate matches the true speed ω best at a point midway between the sample
times t0 = n∆T and t8 = (n−1)∆T – i.e., at t4. If we make a piecewise linear approximation of speed,
then
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ω̃[n] ≈ ω[n] + ω[n−1]
2

In our original formulation of the model, the control signal c[n] was proportional to the difference
between ωd[n] and ω[n]:

c[n] = Kp(ωd[n] − ω[n])

However, the controller does not have direct access to ω[n], and a better model for the experiment
hardware is

c[n] = Kp(ωd[n] − ω̃[n]) = Kp

(
ωd[n] − ω[n] + ω[n− 1]

2

)
Simulate a new model for the experiment hardware using this controller instead of our original controller.
Use the measured parameters β and γ you obtained from Lab 1, and suppose ωd[n] = 1 and ω[0] = 0.

2a. Provide a plot of ω[n] as a function of n using the programming language of your choice
(e.g., MATLAB, Python, ...).

2b. Briefly describe the important features of your plot, and how they relate to the inconsis-
tency that was described in part 1 of this post-lab.

The important result from this analysis is that the new model correctly predicts that
ω[n] does not exhibit pointwise oscillation. Because of the way we estimate angular
speed of the rotor, we have introduced additional delay: ω̃[n] depends on both ω[n] and
ω[n−1], so the system is actually second-order not first-order.

3. Estimating Speed With Less Delay
In the previous section, we estimated the rotor speed by computing the time for the rotor to spin one
full term, i.e., t0 − t8 in the previous figure. This method introduces significant delay in the feedback
loop, and makes the system behave more like a second-order system than as a first-order system. In
this section, we investigate an estimate based on a single pulse period to see if restricting the estimate
to more recent times can better preserve the first-order nature of the hardware that we expected.
If ticksperestimate=1, our hardware computes a different estimate of rotor speed:
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ω̂[n] = 1/8
t0 − t1

The 1/8 in the numerator results because the rotor rotates just one-eighth of a turn in the time from t1
to t0. As with ω̃[n] we can relate the estimated speed to the model speed ω[n] by linear interpolation:

ω̂[n] = aω[n] + bω[n−1]

However, the constants a and b are no longer 1
2 .

3a. What are the values of a and b needed for ω̂? Briefly explain your reasoning.

a = 15
16 . b = 1

16 .

The new estimate ω̂[n] best estimates the speed at a point that is midway between t0
and t1. By linear interpolation, this estimate is approximately

ω̂[n] ≈ 7.5ω[n] + 0.5ω[n−1]
8 = 15ω[n] + ω[n−1]

16

Determine the control system equation that results from these new values of a and b.

3b. Enter the new system equation. Briefly show how you derived this equation by providing
a few intermediate steps.

ω[n] = ω[n−1] + ∆T (βω[n−1] + γc[n−1])
= ω[n−1] + ∆T (βω[n−1] + γKp(ωd[n−1] − ω[n−1]))
= ω[n−1] + ∆Tβω[n−1] + ∆TγKp(ωd[n−1] − aω[n−1] − bω[n−2])
= ω[n−1] + ∆Tβω[n−1] + ∆TγKpωd[n−1] − ∆TγKpaω[n−1] − ∆TγKpbω[n−2]
= ω[n−1](1 + ∆Tβ − ∆TγKpa) + ∆TγKpωd[n−1] − ∆TγKpbω[n−2]
= ω[n−1](1 + ∆Tβ − ∆TγKpa) − ω[n−2]∆TγKpb+ ∆TγKpωd[n−1]

Write a program to compute ω[n] as a function of n when ωd[n] = 1 and ω[0] = ω[1] = 0.
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3c. Provide a plot of ω[n] as a function of n.

3d. Briefly describe the important features of your plot, and how they relate to the inconsis-
tency that was described in part 1 of this post-lab.

When the velocity estimate is based on just one previous tick of the optical sensor,
the response is much more consistent with the pointwise oscillation that we expect of a
first-order system.

Comparing the two simulated results, which case shows faster convergence? More broadly, if we want
our control system to convert the fastest, is there an optimal way for measuring the velocity ω̃? If we
are free to choose a and b, what are the optimal values?
Hint: you need to solve this problem numerically (i.e., sweep through different combinations of a and
b and identify the optimal pair.)
Please show your analysis (possibly with graphs) below.
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3e. What values of a and b provide the fastest convergence? Briefly explain.

In both simulation and experiments, we found faster sampling leads to faster conver-
gence. However, the fastest convergence is NOT given by a = 1 and b = 0. The optimal
value is given by the case where the pair of natural frequencies have the smallest mag-
nitude. This can be calculated computationally. We sweep through different pairs of a
and b (under the constraint a+ b = 1), and plot the corresponding eigenvalues.


