
PostLab 4: Marginal Maglev – Solutions
In our fourth lab (Marginal Maglev), we designed a lead controller for a magnetic levitation system. In
this post lab exercise, we will implement a double lead controller in simulation. Assume that the open
loop transfer function of the magnetic levitation system is given by

H(s) = γ(−λE)
(s− λE)(s2 − γay)

and (for ease of grading) please use the following parameter values:

γ = 1250
γay = 1000
λE = −125

Part 1. Start by implementing a PD controller that can stabilize this system. What values of Kp and Kd

result?

Kp = 5 Kd = 0.05

Please show a bode plot of the open loop transfer function H(s)K(s). You should report the phase margin
and gain margin from your simulation. In addition, please show the system step response. You may find
the MATLAB functions margin() and step() useful.
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Part 2. The main issue with a PD controller is that it amplifies high frequency signals. If the physical
system cannot dissipate high frequency disturbances effectively, then a PD controller may not perform well.
Next, we will implement a lead controller. A lead controller can increase a system’s phase margin without
significantly amplifying high frequency signals. First, let’s implement a lead controller in the form:

Klead(s) = K0

(
sp

sz

)(
s− sz

s− sp

)
This requires 3 parameters: K0, sp, and sz. For this problem, please use

K0 = 5
sp = −900
sz = −45

What are the low-frequency and high-frequency gains for this lead controller?

low-frequency gain: Klead(0) = K0 = 5

high-frequency gain: Klead(j∞) = K0

(
sp

sz

)
= 100

What is the maximum phase gain (and its corresponding frequency) of this lead controller?

φmax = 64.8◦

corresponding frequency: f = ω

2π =
√
szsp

2π = 32Hz

On the same bode plot, please show the transfer function of H(s), Klead(s), and H(s)Klead(s).
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What is the phase margin of the open-loop system KleadH(s)? Is this a stable system?

phase margin: 20.1◦

stable? Yes. The phase margin is positive.

Please show the step response of the system with this lead controller.

Part 3. While a lead controller can be used to stabilize the maglev system, we would like to explore ways
to improve the system’s phase margin. Let’s try a double-lead controller:

Kdl =
(√

K0

(
sp

sz

)(
s− sz

s− sp

))2

What are the low-frequency and high-frequency gains of this controller?

low-frequency gain: Kdl(0) = K0 = 5

high-frequency gain: Kdl(j∞) = K0

(
s2

p

s2
z

)
= 2000

Please implement this double-lead controller and show the transfer functionsH(s), Kdl(s), andH(s)Kdl(s).
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Has the phase margin increased? What are the pros and cons of this double lead controller?

This double lead controller improves phase margin, which is good for system stability. How-
ever, it increases the high-frequency controller gain by a factor of sp

sz
= 20, so the system is

more susceptible to high frequency disturbances.

Part 4. Now please design a double-lead controller that satisfies the following two constraints:

1. |Knew(s→ 0)| = K0 = 5
2. |Knew(s→∞)| = 100

Your double-lead controller should have the form:

Knew = K0
sp1(s− sz1)sp2(s− sz2)
sz1(s− sp1)sz2(s− sp2)

Your goal is to choose the two pairs of poles and zeros so that you can improve the phase margin without
increasing the high frequency controller gain. This design process is iterative. Please show the bode plot
of the new system H(s)Knew(s).
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What is the new phase margin and what are your values of sz1, sz2, sp1, and sp2?

φnew : 32.2

sz1: −55.8

sz2: −86.4

sp1: −250

sp2: −386
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Part 5. To implement the double-lead controller on a microcontroller (like the Teensy), we need discrete-
time equations to approximate its behavior. Recall the form of the single-lead controller

K0

(
sp

sz

)(
s− sz

s− sp

)
e(t) c(t)

and the corresponding differential equation:

ċ(t)− spc(t) = K0

(
sp

sz

)
(ė(t)− sze(t))

We can use the forward Euler method to develop a discrete-time approximation:

c[n]− c[n−1]
∆T − spc[n−1] = K0

(
sp

sz

)(
e[n]− e[n−1]

∆T − sze[n−1]
)

By re-arranging the terms, we can find an update equation for c[n] in terms of the previous controller
output c[n−1] and the current and previous error inputs e[n] and e[n−1]:

c[n] = (1+sp∆T )c[n−1] +K0

(
sp

sz

)(
e[n]− (1+sz∆T )e[n−1]

)
Develop a similar update equation for the output c[n] of a discrete-time, double-lead controller:

√
K0

(
sp1
sz1

)(
s− sz1
s− sp1

) √
K0

(
sp2
sz2

)(
s− sz2
s− sp2

)
e(t)

f(t)
c(t)

Hint: Assume an intermediate signal f(t) and that your controller will have access not only to the previous
value of the controller output (c[n−1]) and the current and previous values of the error signal (e[n] and
e[n−1]) but also the previous value of the intermediate signal (f [n−1]).
Enter your equations in the box below.

f [n] = (1+sp1∆T )f [n−1] +
√
K0

(
sp1
sz1

)(
e[n]− (1+sz1∆T )e[n−1]

)
c[n] = (1+sp2∆T )c[n−1] +

√
K0

(
sp2
sz2

)(
f [n]− (1+sz2∆T )f [n−1]

)


